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ARTICLE OPEN

Tracking materials science data lineage to manage millions
of materials experiments and analyses
Edwin Soedarmadji1, Helge S. Stein1, Santosh K. Suram1,2, Dan Guevarra1 and John M. Gregoire 1

In an era of rapid advancement of algorithms that extract knowledge from data, data and metadata management are increasingly
critical to research success. In materials science, there are few examples of experimental databases that contain many different
types of information, and compared with other disciplines, the database sizes are relatively small. Underlying these issues are the
challenges in managing and linking data across disparate synthesis and characterization experiments, which we address with the
development of a lightweight data management framework that is generally applicable for experimental science and beyond. Five
years of managing experiments with this system has yielded the Materials Experiment and Analysis Database (MEAD) that contains
raw data and metadata from millions of materials synthesis and characterization experiments, as well as the analysis and distillation
of that data into property and performance metrics via software in an accompanying open source repository. The unprecedented
quantity and diversity of experimental data are searchable by experiment and analysis attributes generated by both researchers
and data processing software. The search web interface allows users to visualize their search results and download zipped packages
of data with full annotations of their lineage. The enormity of the data provides substantial challenges and opportunities for
incorporating data science in the physical sciences, and MEAD’s data and algorithm management framework will foster increased
incorporation of automation and autonomous discovery in materials and chemistry research.
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INTRODUCTION
The critical role of materials in many technologies, combined with
the opportunity for accelerating materials discovery and optimiza-
tion via modern data science, motivates a transformation in how
materials information is generated, stored, and retrieved,1–6 a
transformation that is well underway in other research fields.7–13

Historically, the only way to retrieve fundamental properties of
mostly “simple” materials (the elements and some binary phases)
involved a manual lookup in the seminal materials databases, such
as CRC materials table,14 the Landolt–Börnstein15 collection, or the
ASM phase diagram table.16 These curated collections require a
high level of validation and are not intended to document the
frontier of materials discovery where sparse knowledge exists for a
wide variety of materials. The advent of high-throughput
computation and experimentation has accelerated the exploration
of composition spaces, especially those containing more than the
elements.17–20 To contemplate the scale of the materials space to
be explored, consider mixing from a set of 40 elements with 10%
composition intervals. The total number of unique compositions
containing 1, 2, or 3 elements vs. 4, 5, or 6 elements is 362,740 vs.
574,221,648. The exploration of vast, high-dimensional composi-
tion spaces motivates the establishment of new data manage-
ment protocols for organizing and disseminating the materials
data. Computational materials databases such as Materials
Project,20 OQMD,21 and AFLOW22 have pioneered this effort for
virtual materials, and the recent release of the High Throughput
Experimental Materials (HTEM)6 and the present work comprise an
important advances in data management and dissemination of
materials experiments, highlighting the importance and

challenges of metadata management in experimental materials
science.
The development of a high throughput synthesis23 and

screening23–26 pipeline in the Joint Center for Artificial Photo-
synthesis (JCAP) enhanced the ability to explore new materials
spaces and also introduced substantial data management
challenges. Although the design of both experiments and data
analysis in this effort were dictated by a specific target technology
(solar fuel generators), the importance of re-analysis with evolving
algorithms or for different target applications (phase mapping is
an illustrative example27–31) motivated the establishment of an
experiment-centric data organization as opposed to a materials-
centric organization. Materials-centric databases such as the ICSD2

and computational materials databases enable retrieval of proper-
ties of a given composition and crystal structure. The Materials
Experiment and Analysis Database32 (MEAD) facilitates retrieval of
the experiments that were performed on a given material and the
ensuing analysis that generated the inferred materials properties.
This simultaneous tracking of experiment and analysis metadata

is well aligned with the burgeoning field of materials informatics
in which strategies for deriving materials descriptors are
constantly evolving.4,33–36 MEAD has enabled data science
integration in materials science, including curation of optical
data37 used to train machine learning models that help establish
the requisite data sizes for materials data;38 training models
combining composition, performance, and structural characteriza-
tion to automatically identify composition–structure–property
relationships;39 and functional clustering to identify materials that
represent unique composition–property relationships.34 In this
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manuscript we describe the data management techniques to
facilitate not only their broader adoption in experimental
materials science, but also community usage of the data, which
adheres to the Findable, Accessible, Interoperable, and Reusable
(FAIR) data principles where possible.40 The data management
strategy emphasizes the importance of tracking data lineage41

and the need for low-overhead implementations of data manage-
ment schemes.

RESULTS AND DISCUSSION
Data management strategy
A conclusion derived from raw data must always be considered in
the context of the data origin and history, motivating tracking of
data acquisition and processing to establish the lineage41 of the
derived data. Working backwards, knowledge is obtained from
analysis of data that was collectively analyzed by grouping
together outputs from a series of measurements. From the
generation of raw data to its aggregation and analysis, human or
machine decisions as well as calibration data and software/
hardware version information comprise the metadata that is
ideally inseparable from both the raw data and the conclusions
derived from it.
To facilitate tracking of the data lineage and metadata

integration, we divide the experiment-to-knowledge process into
five research phases: (i) synthesis, i.e., the deposition and
processing of chemicals/elements on a chosen substrate; (ii)
characterization, i.e., the measurement of desired properties; (iii)
association, i.e., the grouping of characterization data to be
analyzed collectively; (iv) analysis, i.e., the processing and

extraction of properties from raw data; and (v) exploration, i.e.,
the retrieval and visualization of raw and derived data.
Our data management strategy is to establish distinct but

compatible protocols for data management within and across
each of these research phases with clearly defined protocols for
linking data between neighboring phases. Phases (i–iv) are
governed by the data and analysis management schema, which
we first describe in terms of the management strategy and policy.
Although such a schema can be implemented in a variety of ways,
we focus on a low-overhead implementation that scales well with
respect to data file size and measurement throughput.
This implementation also enables somewhat independent

software development for phase (v), which is desirable because
lab scientists, engineers, community researchers, etc. may desire
to interact with the data in different ways. Although we have
developed several interfaces for phase (v), in the present work we
focus on our web interface to MEAD, which serves as the portal for
exploring JCAP HTE data and is being publicly released in
conjunction with this manuscript. The contents of this initial
public release are also summarized below.

The data management pipeline
We designed several types of organizational files to track raw and
metadata within the various phases of research. The experimenta-
tion pipeline shown in Fig. 1 commences with the “Synthesis” and
processing phase, where new materials are made typically
through combination of raw chemicals and materials received
from external vendors, prompting the design of tables of
purchased substrates and chemicals whose entry into the
database is a prerequisite for the synthesis of a new composition

Fig. 1 Data management pipeline: experimental pipeline and the corresponding flow of data files. The pipeline is split into five phases:
synthesis, measurement, association, analysis, and exploration as described in detail in the main text. This pipeline ensures that the data
lineage is kept intact at any stage in the process. Black arrows at the bottom indicate that an experiment sequence may include multiple
measurement-synthesis and/ or measurement-analysis cycles. Files with extensions of rcp, exp, and ana provide a summary of the Run,
Experiment, and Analysis phases, respectively, where each of these files is annotated with a primary measurement type, as indicated by XRDS,
XRFS, UVIS, and ECHE in the image, corresponding to x-ray diffraction, x-ray fluorescence, ultraviolet-visible spectroscopy, and
electrochemistry, respectively
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library. Each library is deposited by either inkjet printing of
elemental precursors or physical vapor deposition (PVD).
Owing to the focus of the research on composition libraries of

materials, which involves batch synthesis of an array of distinct
materials, each “plate”, which consists of a substrate and all
materials deposited onto it, is assigned a unique “plate_id” that
serves as a primary identifier for tracking data lineage.
The processing of materials, for example, a sequence of thermal

processing treatments, is also tracked, and while some processing
may occur at a later point in time, e.g., after some measurements
have been performed, documentation of plate processing is a
prerequisite for initiating any measurement. Synthesis and
processing involves some management of instrument-created
data files, for example, pressure and temperature profiles in a
deposition or tube furnace system, and these files are managed as
described below for measurement data management. Even within
this synthesis portion of the experiment pipeline, the existence of
several different types of data requires the establishment of clear
data flow rules, as illustrated by the arrows in Fig. 1.
These data flow arrows also indicate the types of association

between data types, illustrating that, for example, a given type of
substrate can be used to synthesize many different library plates
but a given plate only utilizes a single substrate type. To
accommodate the flexibility of research activities, many-to-many
mappings are often required, for example, several chemicals may
be used for a deposition and some of those chemicals used again
for another deposition.
Although measurements occur during materials synthesis, and

many characterization experiments may purposely or inadver-
tently alter the material, the “Measurement” phase of the pipeline
is meant to include any experiments whose primary purpose is to
ascertain chemical, physical, or performance characteristics of
materials. To adopt uniform data management over the variety of
both custom-built instruments, which generally include custom
data handling software, and purchased instruments, which
generally limit the customization of data handling, the primary
organization unit of data is a “run”, which corresponds to all
metadata and data that is generated as the result of a user
initiating measurements. In our implementation, the metadata for
the run is stored in a recipe (rcp) file, which also contains a catalog
of data files acquired during the run. The rcp files are written
automatically where possible and the raw data files are considered
to be inseparable from their corresponding rcp files; i.e., data

processing is only allowed to occur on files that are referenced in
an rcp file, a critical rule for maintaining data lineage.
In the “Association” phase of the data pipeline, different runs

are grouped or packaged together because they are part of the
same “experiment.” For example, one can perform a calibration
run of an instrument and then perform characterization of a plate
via a series of runs. The set of runs is packaged into an
“experiment” (exp) file, which includes pointers to the associated
run files as well as annotation of the role of each run in the
experiment. More specifically, the exp contains the set of raw data
files with tracking of the runs from which they originate. This
provides the capability to exclude some measurements from
entering the exp if they are deemed to be erroneous or irrelevant
for the planned analysis. The many-to-many mapping of runs and
experiments results from the need to package raw data can be
packaged in different ways for different analyses, and that any
given package may contain any number of runs from any number
of plates.
Management of the “Analysis” phase is designed around the

concept that many different types of analysis may be performed
on a given data set. By rule, an analysis function can only utilize
raw data from a single exp file, making the mapping from exp to
“analysis” (ana) files one-to-many, which promotes specificity in
the packaging of data into exp files. The structure of ana files is
designed to facilitate tracking of the analysis algorithms, with each
section or “ana block” of the file corresponding to the execution of
a single analysis function whose name, version number, and
parameters are all tracked within the ana file as shown in Fig. 2.
Each ana block can utilize results from previous ana blocks; an
example sequence of operations is noise filtering, scaling by
calibration data, curve fitting, and calculation of a performance
metric. The ana block for each of these operations includes a
catalog of the files in which the results are saved (analogous to an
rcp file containing a catalog of raw data files). Saving this
intermediate data is important for a variety of reasons, most
practically that each step of the analysis can be executed
independently to enable assembly of a custom analysis sequences
from the compendium of analysis functions. This organization of
analysis data also facilitates interactions with software version
control, for example fixing a programming error in an analysis
function creates a new function version that prompts re-execution
of all analysis sequences referencing the erroneous function.
Given the association of each ana file with a single exp file, the

starting point for any ana file is raw data and its associated

Fig. 2 Analysis link to code repository: blocks inside an analysis file contain references to the experiments and runs, comprising the scope of
the analysis. Each analysis step is indicated by the name of the function in the associated open source repository,64 along with the version of
the analysis function and the values of any parameters
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metadata, with a notable exception being the ability to import the
results of one ana file into another ana file. This data flow
introduces some data management complexities but is practically
motivated by the nature of materials research, for example one
ana file may describe the extraction of materials’ compositions
from x-ray fluorescence data, and these composition results are
utilized in various other types of analysis where they are imported
from the existing ana file so that the composition calculation does
not need to be repeated every time the composition data are
needed.
Considering the results of any given analysis to be “knowledge”

of the materials properties, the origins of this knowledge is thus
traceable from the series of analyses in the ana file, to the
grouping of raw data in the exp file, to the measurement instances
in the rcp file(s) as well as the history of all prior (and subsequent)
measurements, to the sequence of materials synthesis procedures,
and ultimately to the raw materials utilized in the synthesis. While
the next section summarizes our implementation of this data
management strategy, we note the importance of making any
data unit “read-only” before it can be referenced by a subsequent
data unit, which alleviates the need for version tracking of each
file because once a file is used it cannot be altered. For example,
during import of analysis results into another ana file, the
originating ana file must first be made to be read-only. Any
erroneous analysis is corrected by flagging the read-only version
as erroneous and generating a new, corrected ana file.
A plate’s history from the time of its creation to its latest state

after a series of processing and measurements are recorded in a
“plate information” (info) file that is always updated after activity
in any of the four phases of the experimental pipeline. This file
serves as a snapshot of the plate’s history and provides a
convenient source of metadata information for researchers and
automated tools to analyze the plate’s corresponding measure-
ment data files. The info file is dynamically updated by the
information management system described below, consolidating

information from automated instruments as well as data entry by
end users.

Lightweight implementation via relational database
The practical need to perform data management with minimal
expense motivates utilization of resources already at researchers’
disposal, the most ubiquitous and often overlooked one being file
management systems that are integral to modern personal
computer operating systems.
To create data management protocols that are broadly

applicable, scalable, and accessible to scientists who may not be
trained in data infrastructure and programming, we created a
lightweight implementation of the above data management
strategy to leverage the native file system tools of any standard
operating system.
The operational file system is illustrated in Fig. 3 along with its

connections to two other primary organizational components, a
relational database that manages the linkages within the file
system and an attribute index that facilitates database exploration.
In this figure, in step 1 researchers can configure the instruments
that then produce raw data files (step 2). These files are then
registered into the database (step 3). Selected attributes and
identifiers are also included in the searchable index (step 4).
Although metadata tracking is automated where possible,
complete automation is impractical, requiring some manual
annotation and metadata entry in step 5, which contributes to
the metadata indexing in step 6. The composite index of
experiment attributes linked to the user interface (step 7),
enabling researchers to explore the data through an interactive
user interface (step 78). The wider research community uses the
web version of the user interface to explore the data made
available by MEAD (step 9). Using keywords and filtering criteria,
end users can progressively refine results until desired data is
found (step 10).

Fig. 3 MEAD implementation: schematic of the lightweight implementation of the data and analysis management with web-based user
interface to enable community exploration of the database
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To facilitate seamless data management from instrument
prototyping to high-throughput operation, and to enable data
acquisition to proceed during brief database outages, data from
characterization runs are typically stored locally on instrument
computers and then automatically pulled to the central file
system. This run data are deposited directly into a read-only drive,
as are completed exp and ana files. As each rcp, exp, and ana file is
housed in a folder with its associated files, folder naming and
renaming is used for tracking the folder status, with folder names
ending in “.run”, “.done”, and “.copied”, indicating data generation
that is in-progress, ready for import to the read-only database, and
successfully ingested, respectfully. A failed ingestion is marked by
a folder ending in “.failed” and triggers user inspection of
the issue.
The data ingestion involves extraction of key organizational

metadata for registration in the relational database, where
plate_id is a primary organizational unit. The experiment history
of each plate is complementary to the raw-to-analyzed data
lineage described in the previous section, as the plate history
includes all depositions, processing, characterizations, associa-
tions, and analyses involving a single plate regardless of its
relevance to a particular result.
Although each plate history is contained within the relational

database, it is also summarized in a plate information (info) text
file for rapid access and readability by researchers. The rcp, exp,
and ana files are similarly structured text files with formatting
similar to JSON files including restrictive formatting requirements
to enhance human readability and ease of machine reading/
writing.
Embedded inside all of these files are identifiers that link them

to each other, which are written and maintained as part of the
management of the relational database. The main purpose of this
database is not to capture the entire data files produced by the
system, but rather track them at the metadata and logical-link
level illustrated in Fig. 1. The relational database also enables
enforcement of the system’s referential data integrity. The
relational database is used to verify that identifiers are valid, to
enforce that certain data can be generate only once its
prerequisite data are confirmed, and that no duplicated items
are created. These constraints allow all internal users to share a
unified view of the data, and operate on the data with confidence.
The lightweight nature of this data management implementa-

tion enables perhaps the most fundamental yet often overlooked
aspect of managing experiments that deployment of data
management for a given instrument must precede its deployment
for performing research. For a new characterization instrument,
one only needs to have relevant metadata written to an rcp text
file along with a log of the raw data files located in the same run
folder. Such run folders are also straightforward to generate from
commercial instruments whose data export is not configurable.
Although data organization protocols, in particular HDF5, offer

alternative routes to implementation of the above data manage-
ment scheme, the readability and transportability of the info, rcp,
exp, and ana files is advantageous, especially for large research
teams. The management of data relationships without indexing of
the raw data has enabled the management of over six million data
files with a relational database that is ~100 MB in size.

Attribute index and data exploration via the web interface
Although the relational database serves well as a management
tool and interface to the file system for data processing, it is not
designed for data exploration by users. To serve evolving research
needs, a more-detailed indexing of the data is needed to enable
the development of a flexible user interface for search, retrieval,
and visualization of data. The Experiment Attribute Index shown in
Fig. 3 organizes attributes from the synthesis, characterization,
association, and analysis portions of the data pipeline into hashed

dictionary-style keyword and keyword fragment indices that
enable researchers to perform non-exact searches based only
parts or fragments of the metadata content.
The attribute index is also designed to allow any type of

experiment attribute to be defined for a limited number of
experiments and analyses, and this sparse population of certain
attributes facilitates rapid searching and avoids burdening the
index with empty values for attribute types that are not pertinent
to a given piece of data. In this way, new attributes can be added
for new instruments or new versions of an existing instrument
without back populating the attribute values for existing data. On
the other hand, new attributes can be easily appended to the
index, even retroactively for existing data, to enable new search
capabilities.
Some more-detailed information that serves as a primer for

using the web interface is included in the Supplementary
Materials, which also includes tables of every plate and every
inkjet-printed sample along with a script, demonstrating how to
read and use them. The web interface for searching this attribute
index allows users with minimal familiarity of the content to find
results only based on keyword searches. Users with more
familiarity with the fields available in the index can create more
specific and restrictive search criteria and/or use the iterative filter
interface to narrow the search results and obtain the desired data.
The main text search bar performs keyword searching similar to

that of web search engines and shopping websites. These
keywords could be element names, experiment type, date of
experiment, figures of merit in the analysis files, doi number of the
associated publications, chemicals, and solvents involved in the
experiments, and many others. An active search assistant guides
users on possible choices as they type, and when a keyword is
found in more than one attribute field, users can narrow down the
search to only a particular category. Figure 4 shows a session
where a user search for results related to a materials library.

Persistent data tracking and materials data infrastructure
MEAD meets the FAIR data principles40 by ensuring that its data
and metadata are both findable through globally unique and
persistent identifiers in the form of both internal indexing and
digital object identifiers (DOIs) when appropriate. Each data file in
the MEAD repository is described by a corresponding metadata,
which could either be a run description file (rcp file), experiment
file (exp file), analysis description file (ana file), or plate information
file (info file). These metadata files in turn contain the necessary
identifiers that point to relevant data files required to perform the
analysis and reconstruction. As a corollary of making MEAD files
accessible through their DOIs, the files are accessible through the
widely available web protocol. In addition, once published, the
files would also remain available through the DOIs. To ensure
interoperability, both the metadata and data files contain field
descriptors and textual comments that follow conventions
commonly followed in the field. References to other data items
are always written in consistent identifier formats throughout the
repository. Data reusability is achieved through a careful book-
keeping and tracking of attributes from the synthesis, measure-
ment, association, and analysis phases, as well as the algorithms
and other observations made by researchers.
The Minerals, Metals and Materials Society (TMS) recently

established a guiding document for building data infrastructure in
materials science and engineering.42 The first recommendation is
to “Develop and deploy robust repositories”, which is precisely the
role of MEAD for materials experiments. The report details a
materials-tailored Science Data Lifecycle Model that includes
stages Plan, Acquire, Process, Analyze, Store, Share, Reuse. The
Plan and Acquire stages are covered by the rcp phase of MEAD;
the Process and Analyze stages are covered by the exp and ana
phases of MEAD; the Store and Share phases are covered by the
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doi generation for each data item and the public web release; and
Reuse is what we aim to enable with the public release of MEAD.
The present work describes our comprehensive management of
experimental data despite the lack of standards for doing so,
which is additionally highlighted by the highest priority challenge
in the report: “No unified MSE community approach to its diverse
challenges with materials data.” We present a data management
strategy that is well suited for our experimental workflow,
highlight its applicability for other settings, and note that given
our highly structured data sets, conversion to emerging standard
schema can be achieved with a translation layer.
Although a comprehensive analysis of data management

strategies in materials science is beyond the scope of the present
work, we briefly describe how MEAD fits within other community
efforts in this area. A critical area for accelerating data-enabled
discovery is the integration of experimental databases such as
MEAD and HTEM6 with computational materials databases such as
Materials Project,20 OQMD,21 and AFLOW.22 Each of these
databases tailors data management to the specific research
workflows, motivating the establishment of frameworks that
integrate these workflow-specific databases, as envisioned by
several materials data infrastructure projects. The Materials Data
Facility (MDF)43 provides a framework to aggregate and make
materials-related data more searchable via metadata storage.
Materials data infrastructures have also been developed with a
concerted focus on coupling to machine learning algorithms, for
example Citrination35 and The Novel Materials Discovery (NOMAD)
Laboratory.44 With MEAD’s metadata management, MEAD entries
may be readily transferable to MDF, Citrination, NOMAD, etc., but
the uniqueness of MEAD is its management of data relationships
to establish data lineage for experiments, making it a prerequisite
and/or complementary infrastructure to these data repositories.
The data lineage maps in MEAD could also be used to build
graphs such as directed acyclic graphs (DAGs) as envisioned and
implemented by AiiDA, the automated interactive infrastructure
and database for computational science.45 AiiDA is well aligned
with the data lineage goals of MEAD, as DAGs describe the
complete data provenance from source input to resulting output,
making the implementation of AiiDA tools in MEAD data a worthy
pursuit in future research.

Summary of database contents
This initial public release of MEAD contains over a million samples,
which includes duplicate compositions that may be deposited with
different parameters or annealed differently, making the number of
unique “materials” a subjective quantification that is discussed further

below. Similarly, assessing the quality of any given measurement is
somewhat subjective. Consequently, this initial MEAD release does
not contain annotations of data quality. Failed measurements or other
manually identified erroneous data has been omitted from MEAD.
The measurement data do vary in quality and presence of instrument-
related artifacts, motivating establishment of automated data quality
evaluation in future analyses. Data quality is one aspect of the larger
challenge in employing this extensive data set for machine learning
or other purposes, the determination of the data subset that is
appropriate for a given research purpose. A primary goal of MEAD is
to provide users with data lineage including raw data to enable
design of quality control and data selection algorithms, and this
completeness in data reporting inevitably results in the inclusion of
some poor quality data, which could result from failure of a synthesis
or characterization instrument or incorrect user entry of metadata.
Previous publications have included validation of specific data sets
using detailed characterization and traditional techniques,46–57

establishing the high quality of those select data (see Table S1),
and more-comprehensive data quality assessments are not available
at this time, although basic quality control measures are discussed in
Methods.
The number of samples and the number of composition

systems are two direct representations of the data set contents
and are enumerated in Table 1 for various combinations of the
compositional order and the chemical system (anion chemistry) of
the samples. MEAD contains measurements on 1.5 M samples
from the exploration of 1349 unique composition systems
(number of unique combinations of elements) by inkjet printing
and 113 composition systems by PVD, with 50 different elements
appearing in the composition libraries. Measurements performed
serially, i.e., on a sample-level, are tracked as individual files, and
there are 6.5 M such files in MEAD. Each sample-level analysis uses
one or more measurements and typically results in a set of figures
of merit, and there are 2.3 M such analyses in MEAD. Figure 5
summarizes the sample-level measurements and analyses by the
elements contained in each sample, where a measurement on a
sample containing three elements is counted in each of these
element’s measurement tally. This distribution reflects the
research focus in discovering earth-abundant (photo)catalysts for
solar fuels generation.
The characterization experiments performed on each sample

were chosen for the research project at hand with consideration of
measurement throughput and expense, leading to large variability
in the number of sample measurements for each technique. These
measurement totals for some of the primary characterization
techniques are as follows: x-ray diffraction (~38 K), x-ray

Fig. 4 Web interface: screenshot of the web-based search interface of MEAD that is publicly accessible at https://htejcap.org (see Data
Availability statement)
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fluorescence (~ 87 K), optical imaging (~1 M), optical spectroscopy
(~1.1 M), electrochemistry (~4.2 M). This scale of data with a
diverse set of materials, as quantified by the unique composition
spaces in Table 1, is uniquely enabled by the high throughput
experiments managed by MEAD.
This paper reports the initial publication of the MEAD,32 which

contains a large collection of data produced by Caltech’s Joint
Center for Artificial Photosynthesis (JCAP) High Throughput
Experimentation (HTE) group. MEAD provides researchers access
to information on synthesis and materials characterization, primarily
optical and electrochemical properties, for millions of materials. The
need to manage data from a diverse set of both custom-built and

purchased instruments led to the development of a comprehensive
data management system for materials experiments with the
requisite flexibility to adapt to the natural evolution of research
methods and objectives. With additional tracking of the algorithms
used in data processing, MEAD provides the full data lineage so
users can explore the raw data and its interpretation that yielded the
derived properties. The web search interface enables exploration of
data and download of desired raw and/or analyzed data sets with an
embedded DOI. The data and metadata management is also
intended to engage the rapidly developing field of data science to
provide added value to materials experiments and foster the
adoption of computer-aided discovery in materials science.

Fig. 5 Element-wise database contents: histogram of the number of sample-level measurements (top) and analyses (bottom) by element.
Anion elements oxygen, nitrogen, and sulfur are introduced through reactive annealing and/or PVD atmosphere and are omitted in this plot.
The elements are ordered by the number of measurements and color by the relative ratio of sample prepared by PVD vs. by inkjet printing

Table 1. Summary of composition libraries: summary of database contents in terms of deposition method, chemical system, and compositional
order (number of cations)

Chemical
system

Number of PVD-deposited libraries Num. comp. systems

1 cation 2 cations 3 cations 4 cations >4 cations

Oxide 2 193 65 0 0 92

Oxynitride 6 20 5 0 0 11

Other 2 6 3 0 0 10

Number of inkjet-deposited libraries Num. comp. systems

1 cation 2 cations 3 cations 4 cations >4 cations

Oxide 4 21 13 391 166 175

Sulfide 1 0 0 19 0 9

Other 4 2 0 14 1 16

Number of inkjet-deposited samples Num. unique element
combinations

1 cation 2 cations 3 cations 4 cations >4 cations

Oxide 213,213 106,129 363,001 51,1867 16,643 1086

Sulfide 7677 3964 12,136 8804 0 93

Other 14,898 4338 9680 12,475 60 170

The PVD films are continuous spreads with each library corresponding to a single composition space. The number of composition systems corresponds to a
unique combination of elements on the library level, and the high-order inkjet composition libraries typically include all compositional subspaces, making the
number of unique element combinations substantially larger
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METHODS
Information management systems
MEAD is the external-facing portion of JCAP HTE’s laboratory information
management system. Its user interface is optimized for retrieving data
rather than data input and data management. On the extreme opposite of
MEAD, lies a network of Windows computer-controlled data acquisition
and instrument automation nodes. Each of these nodes is networked and
accessible from a centralized set of UNIX servers. Data produced on the
nodes are collected and organized by the servers. At this stage, metadata is
often added prior to further processing. Researchers perform preliminary
quality control to make sure that the instruments are properly calibrated
and that the result is reasonable. At the end of the quality control phase,
collected data is archived and stored on a centralized location that can be
accessed by JCAP HTE researchers for further analysis and processing.
Our internal website allows researchers to monitor the progress of data

acquisition, data collection, data quality, and other relevant attributes
associated with the plates under measurements, the chemicals used for
producing the plates, as well as output data files produced by data
acquisition nodes and other processes. Researchers can attach files to add
more information about a particular plate, run, experiment, or analysis.
Simple tabular raw data files produced by the instruments, image captures
done by the instrument or external cameras, as well as live cameras can
also be visualized through the web application and network, allowing
researchers to simultaneously monitor the experiment progress.
Collected data are processed automatically every night or on-demand as

needed. In this step, the data are categorized and its key attributes are
imported into the relational database. When needed, raw output files from
the instruments are renamed to make them more descriptive and uniform.
Any anomalies detected will produce alerts that have to be corrected by
researchers. Several import processes result in an intermediate output that
has to be finalized by users. One example of this process is JCAP HTE’s image
alignment process where users have to visually inspect the scanned images
and align the image if necessary. The entire processing is done in Java and
Python, except for a few nodes where proprietary binary files need to be read
with C++ programs before converted into raw text files. Key identifiers and
attributes are stored in a common MySQL database, and as much as possible
we utilize the relational database’s inherent ability to enforce referential
integrity rather than write customized code to do this.
All JCAP HTE’s data acquisition computers have graphical user interface

software to assist researchers with collecting data. For our electrochem-
istry, scanning microscope, ultraviolet-visible station, and customized
furnace, the graphical user interface was developed in LabView to provide
researchers with virtual instrument panel complete with buttons, graphs,
and switches that control the machine’s operation. This virtual instrument
also contains windows and panels that collect experiment attribute inputs
as well as detailed recipes for making reference measurements that need
to be read before the experiment is performed. The user interface then
submits this data, which is then included in the run metadata. During
operation, as the virtual instrument software records data to the
acquisition computer, the server can monitor the progress, and the
researchers can visualize temporary results and decide to plan for the next
run, or even to abort the run if needed.
Finally, the server Java software running on Tomcat combined the

metadata files and the content of the relational database to create a
searchable keyword index whose entries simply point back to the metadata
file and archives. This index and the archive files are then exposed to the
Internet using a simple Java servlet framework serving REST API and a front-
end component built with standard Javascript with Bootstrap design
framework. Most charts and other visualizations are done using Javascript
canvas and CSS. Archive files contain plain text files, XML files, common
image files such as JPEG, PNG, TIFF, and EPS, and Python’s PCK files.

Experimental techniques
Based on the objective of the HTE group at JCAP experimental techniques
revolve around the synthesis and characterization of materials for solar
fuels generation. Nearly all samples are deposited using either inkjet
printing40 or PVD.58 Basic quality control and plate alignment is done via
screening of optical properties via platebed scanning24 and ultraviolet-
visible spectroscopy.24,59 Structural characterization data are generated at
synchrotron experiments at Stanford Synchrotron Radiation Lightsource60

or an in-house Bruker diffractometer61 that is coupled to subsequent
automated analysis.27 Compositional analysis is performed via techniques
such as x-ray fluorescence62 where applicable. Accelerated ageing of
electrocatalysts are performed in a specialized system called parallel

electrochemical treatment system.63 Photoelectrochemical performance is
assessed via a series of specialized scanning droplet cells.44,45 The range of
experimental techniques is ever evolving but as soon as a technique is not
a one-off experiment or is intended to be run on a regular basis in-house
the pipeline is amended to the specific needs of the new technique. The
implementation of a new measurement technique into the MEAD takes
typically one work week.
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